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Abstract—Radiation is an important factor for determining
thermal properties of astrophysical systems, such as star for-
mation or the evolution of galaxies. In this paper we discuss
the performance characteristics of an enhanced version of the
astrophysics code Athena++. The code employs a direct solver for
the radiation transport equation, which is accurate and flexible.
It exploits several levels of parallelism for efficient execution
on modern multi- and many-core processors. We discuss the
radiation transport method and its parallelization. Then we show
scalability and performance analysis results to demonstrate the
impact of various parallelization strategies on the performance.
Results are presented for Intel Xeon and Xeon Phi (KNL) nodes.

Index Terms—Astrophysical Systems, Radiation Transport,
Parallelization, Vectorization, Performance Analysis

I. INTRODUCTION

The purpose of this technical report is really twofold: Fore-
most we want to discuss and report on the performance of the
Athena++ code. In addition, we hope that presented methods
might help other scientific code developers to optimize their
applications for modern multicore processors. Radiation is the
key to determine the thermal properties of many astrophysical
systems, such as the formation of stars in various environments
[1, 2, 3], cosmological structure formation [4], disruption of
massive giant molecular clouds [5], and evolution of galaxies
with feedback from active galactic nuclei [6, 7], to name but a
few. For cases where radiation pressure is the dominant force,
for example in the inner region of black hole accretion disks
[8], photons control the dynamics of these systems. Therefore,
calculating the propagation of photons and the interactions
between gas and the radiation field accurately is critical to
understand the properties of these systems.

In principle, photons are described by the specific intensity
I , which should be evolved in numerical simulations by
solving the radiative transfer equation as [9]

∂I

∂t
+ n ·∇I = σt (S − I) , (1)

where σt is the total opacity and S is the source function. This
equation is very challenging to solve numerically compared
with the classical magneto-hydrodynamic equations because of
the dimensionality of the problem. The specific intensity is not

This work was supported by the NASA Supercomputing Support Services
(NS3) contract, NNA07CA29C

only a function of time and space, but also a function of angles
and frequency, which significantly increases the computational
cost.

For astrophysical systems where the typical dynamic time
scale is much longer than light crossing time, it is usually
too expensive to solve the above radiative transfer equation
directly. This equation is then usually integrated over angles
and frequencies to get the frequency independent radiation
moment equations, which are used to evolve the radiation
energy density and flux. The radiation moment equations are
easier to solve implicitly or explicitly with reduced speed
of light approximation [10, 11]. However, they need a clo-
sure relation, which is typically implemented by specifying
the Eddington tensor to relate the radiation pressure to the
radiation energy density. When the time variation of the
Eddington tensor is small in each hydrodynamic time step,
the time independent radiative transfer equation can be solved
with short characteristics to get a snapshot of the variable
Eddington tensor (VET), which is then used to close the
radiation moment equations. This approach has been adopted
in various numerical codes [12, 13, 14, 15, 16].

When solving the time independent radiative transfer equa-
tion is too expensive, various assumptions are made to ap-
proximate the Eddington tensor or the radiation flux. The most
commonly used method has been flux-limited diffusion (FLD)
[17], which does not evolve the radiation flux but instead
assumes it can be specified by a diffusive approximation.
Another increasingly popular alternative is the M1 method
[18, 19], which solves an evolution equation for the radiation
flux, but specifies an approximate form for the Eddington
tensor. In both methods, the Eddington tensor is specified
in terms of the local radiation energy density and flux. The
flux limiter in FLD, which parameterizes departures from
the diffusive behavior, is also determined by local values of
the opacity and radiation energy density. Because numerical
algorithms based on these two schemes are easy to implement
and have been shown to be accurate in the diffusion limit, they
have been widely used for various astrophysical systems [e.g.,
20, 21, 22, 23, 24, 25, 11, 26, 27].

However, these assumptions are usually designed to work
in one extreme limit, while the dynamics of radiating fluids
change dramatically when the radiation energy density, mo-
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mentum, as well as the optical depth across a typical size
change [9, 28]. In the regimes where these assumptions are
not valid, it is unclear how these assumptions will affect the
dynamics of the fluid, especially in multi-dimensions where
the angular distribution of the radiation field is important and
poorly constrained by these assumptions. For example, [29]
shows that when the impact of the radiation forces on the dusty
atmosphere of ultra-luminous infrared galaxies is studied,
simulations performed with VET lead to different conclusions
than simulations performed with FLD. This example demon-
strates that in the semi-transparent regime, where diffusion
approximation fails, simulations based on this assumption can
be misleading. In real astrophysical systems the photosphere
is crucial for the observational appearance and cooling, so
it is essential to model the transition from optically thick to
optically thin regions accurately.

There are several numerical algorithms that can solve equa-
tion (1) directly without ad-hoc assumptions. One popular
approach is the Monte Carlo Method [30, and references
therein], which is able to handle various radiative processes
accurately. Several novel approaches have also been developed
to reduce the noise and computational cost of this method
[31, 32, 33]. The co-author of this report has developed a finite
volume approach to solve equation 1 for specific intensities
along discrete angles [34]. This algorithm is accurate, flexible
and efficient to model various astrophysical systems in 3D,
although the simulations are still compute expensive. It is
implemented in the publicly available package Athena++1 and
has been successfully used to study the thermal stability in
radiation pressure dominated black hole accretion disks [35],
structures of black hole accretion disks in super-Eddington
regimes [36], stability and structures of accretion disks around
supermassive black holes [37], prompt emission in tidal dis-
ruption events [38], structures and energy transport at the
envelopes of massive stars around iron opacity peaks [39, 40].

Given the value of this code for our understanding of
astrophysical systems, we want to make sure it takes full
advantage of vectorization and parallelization available in
modern processors, In addition to this, we are experimenting
with using multi-threading to exploit yet a third level of
parallelism. The rest of the paper is structured as follows.
In Section II we describe the challenges that have to be
addressed when implementing radiation transport methods. In
Section III we discuss the implementation of the algorithms,
addressing issues such as communication, vectorization and
multi-threading. Performance results and analysis for Xeon
and Xeon Phi (KNL) clusters are presented in Section IV and
in Section V we draw our conclusion and outline future work.

II. CHALLENGES TO SOLVE THE TIME DEPENDENT
RADIATIVE TRANSFER EQUATIONS

Typical MHD simulations need to evolve 8 independent
variables in time and space while we typically need to solve
80 specific intensities for the same time and space in order

1http://princetonuniversity.github.io/athena/

to resolve the angular distribution of the radiation field ac-
curately. If the computational cost to solve one independent
variable is the same for both MHD and radiative transfer parts,
the radiative transfer simulations will be slower at least by
a factor of 10. In relativistic systems, the CFL condition is
similar to MHD. In non-relativistic systems, it is typically
smaller by a factor of about 10. The memory requirement is
also significantly increased, which can also be a challenge to
get the best performance.

There are basically two steps when we solve equation 1. The
first step is the left hand side of the equation, which describes
the transport of specific intensities. Each specific intensity is
independent during this step, which should be an ideal target
for vectorization. However, the transport step requires specific
intensities from neighboring grid zones, which are usually not
continuous in memory particularly in 3D. Getting the best
cache performance will be crucial. The second step is the
right hand side of equation 1, which describes the interac-
tions between different specific intensities at the same spatial
locations. This term couples all the specific intensities but does
not require data from neighboring grid zones. Therefore, the
two terms have exactly the opposite properties and we want
to get the best parallelization performance for both of them.

III. IMPLEMENTATION OF THE ALGORITHM

Athena++ is a general-purpose radiation magneto-
hydrodynamic (MHD) code which is widely used to study a
wide range of astrophysical problems. It is a grid-based code
solving Euler’s Equation. It uses a high order Godunov shock
capturing scheme, which was developed primarily for studies
of the interstellar medium, star formation, and accretion
flows.

A. Communication

The algorithm employs Static Mesh Refinement (SMR)
and is parallelized using the MPI [42] message passing
interface. The SMR criteria is basically the density, more
refinement is considered near the disk midplane where most
of the turbulence is. To implement the MPI parallelization, the
computational volume is organized into a hierarchy of Grids,
Domains, and Meshes. Parallelization is achieved via classical
domain decomposition. The 3D domain is divided into cubes.
The cubes are distributed among the MPI ranks. The algorithm
requires the exchange of the 6 cube faces between neighboring
ranks. The complete hierarchy, including all the Domains and
Grids in the calculation, is called the Mesh. The major data
structure is a mesh-block. A mesh-block is the typical working
unit per MPI rank, however, it is possible to assign multiple
mesh blocks to a rank. A mesh block will typically contain
16x16x16 grids. Each grid typically around 100 variables
and it is the smallest volume where the conserved variables
are stored and updated. Communication in Athena++ can
be characterized as fine-grained and task based. If neighbor
data is not available, tasks which do not require the data
can be performed in the meantime. It employs asynchronous
communication implemented via MPI Test, MPI Isend and



MPI Irecv. This allows overlapping communication and com-
putation. For further optimization of MPI communication,
Athena++ takes advantage of persistent communication. In
loops implementing the exchange of boundary values, we do
encounter situations, where MPI calls with the same commu-
nication arguments are repeatedly executed. In these cases it
is advantageous to bind the communication arguments to a
persistent communication request once, then, repeatedly using
the request to initiate the full message. This is implemented
using MPI Start, MPI Send init, MPI Recv init. An example
is shown in the listing below:
// Create the persistent receive rquest
MPI_Recv_init(hydro_recv_[nb.bufid],rsize,

MPI_ATHENA_REAL,
nb.rank,tag,MPI_COMM_WORLD,
&req_hydro_recv_[nb.bufid]);

....
// Start the receive of the message
void BoundaryValues::StartReceiving(bool field)
{
MeshBlock *pmb=pmy_block_;
for(int n=0;n<pmb->nneighbor;n++) {
NeighborBlock& nb = pmb->neighbor[n];
if(nb.rank!=Globals::my_rank) {
if (field) { // normal case
MPI_Start(&req_hydro_recv_[nb.bufid]);
if (MAGNETIC_FIELDS_ENABLED)
MPI_Start(&req_field_recv_[nb.bufid]);
} } }
return;
}

The MPI scalability of the Athena++ is discussed in Section
IV-B.

B. Computation

Modern processors provide instructions that can operate on
multiple data and return multiple results. They are referred
to as SIMD (Single Instruction Multiple Data). In SIMD
mode, multiple elements are packed into wide registers to be
processed all at once. The width of the registers has been
increasing with more advanced processor types. If the code is
not vectorized then the full capability of the floating point unit
is not used. Compilers will try to generate SIMD instructions
whenever possible, but it is a challenging task due to compile-
time unknown factors and code complexities. Compiler ven-
dors have provided vendor specific pragmas that allow the
user to provide hints to the compiler to ease the challenge
of exploiting SIMD instructions. Using compiler pragmas was
necessary to increase vectorization in Athena++. Our goal was
to increase the vectorization ratio, but not depend on vendor
specific pragmas. Instead we used the OpenMP [41] shared
memory parallelization API. OpenMP 4 provides support for
instruction level parallelism via the simd construct. Rather than
hints, these pragmas are commands to the compiler and will
override all compiler analysis. It is therefore very important to
clearly understand data dependences within the code and also
declare variables as private to a vectorized loop if necessary.
Athena++ is implemented employing C++ object oriented pro-
gramming methods, which supports modularity. However, the
code is also targeted to exploit SIMD Vectorization employing
stride 1 access as much as possible in time consuming loops.
Athena++ data structures are organized as SOAs (Structures

of Arrays) which facilitates traversing computational loops
with stride 1. The loop below shows a typical loop from the
radiation transfer code. In most cases the compiler was able to
vectorize the loops, without the need for pragmas. In the code
below, the compiler assumed false dependences between the
prad data structure and the temporary array temp i2 because
of potential overlap of the data structures. We had to employ
the OpenMP simd pragma to enforce vectorization. Note that
variables adv coef and vdotn are private to the loop, since they
are declared within the loop.
#pragma omp simd
for(int n=0; n<nang; ++n){
....
Real vdotn =
vx*prad->mu(0,k,j,i,n)
+vy*prad->mu(1,k,j,i,n)
+ vz*prad->mu(2,k,j,i,n);
vdotn *= invcrat;
coef_tmp [n] = slorzsq * (1.0-vdotn);
Real adv_coef = tau_fact *
vdotn * (3.0 + vdotn * vdotn)
ir(k,j,i,n+ifr*nang) * (1.0 - adv_coef)
temp_i2(k,j,i,n+ifr*nang) = adv_coef;
...
}

The code snippet in the listing below shows an Athena++
loop calculating a global sum. It can be vectorized by declaring
er0 as a reduction variable.
Real er0 = 0.0;

for(int ifr=0; ifr<nfreq; ++ifr){
#pragma omp simd reduction (+:er0)
for(int n=0; n<nang; ++n){
Real ir_weight = lab_ir[n+ifr*prad->nang];
...
er0 += ir_weight;
..
}
er0 *= prad->wfreq(ifr);
}

Employing these techniques makes the code highly vector-
ized. The performance impact shall be discussed in Section
IV-D.

C. Multithreading

Currently, Athena++ simulations are using very small mesh
blocks in order to be able to use more than 10K cores to
reduce the simulation time. This is not ideal as it increases
the face to volume ratio. In this report we focus on strong
scaling. In the past we conducted weak scaling experiments.
The current weak scaling efficiency is about 90-95% with 10K
cores. Using OpenMP, larger mesh blocks could be used to
increase the weak scaling efficiency to 99%, for example. The
current production runs require the use of about 8x8x16 cells
per MPI rank in order to reduce wall clock time, because
there is a lot of work per cell. Therefore the number of
cells inside the mesh block is not significantly larger than
the number of cells on the six surfaces. If we can increase
the block size to 64x64x64 per MPI rank, then the amount
of communication between MPI surfaces will be really tiny
compared with the calculations inside each mesh block. We
have started to experiment with inserting OpenMP pragmas in
computationally intensive subroutines. The development of the



OpenMP parallelization is still at an early stage but we shall
briefly outline the general approach. We focused on a subset of
the most time consuming routines. The loops in these routines
traverse 5 dimensional arrays. We place OpenMP parallel and
for constructs on the outermost loops, in order to provide
sufficient work for the individual threads. In addition we place
a simd construct on the inner loop to exploit instruction level
parallelism. This is demonstrated in the listing below. Note that
we declare the arrays x1area, vol, and dflx within the parallel
region. They will therefore be private to the individual threads.
#pragma omp parallel
{
tid=omp_get_thread_num();
AthenaArray<Real> x1area, vol, dflx;
x1area.InitWithShallowSlice(x1face_area_,2,tid,1);
vol.InitWithShallowSlice(cell_volume_,2,tid,1);
dflx.InitWithShallowSlice(flx_,3,tid,1);

#pragma omp for schedule(static)
for (int k=ks; k<=ke; ++k) {
for (int j=js; j<=je; ++j) {

// calculate x1-flux divergence
pmb->pcoord->Face1Area(k,j,is,ie+1,x1area);
for(int i=is; i<=ie; ++i){

#pragma omp simd
for(int n=0; n<prad->n_fre_ang; ++n){

dflx(i,n) = (x1area(i+1) *x1flux(k,j,i+1,n)
- x1area(i)*x1flux(k,j,i,n)); }}

The impact of OpenMP parallelization on performance shall
be discussed in Section IV-C.

IV. RADIATION TRANSFER METHOD PERFORMANCE

In this section we shall present timings and discuss the
performance.

A. Evaluation Environment

We ran our experiments on 2 different systems, both of them
are located at the NASA Ames Research Center at Moffett
Field, CA. Our Xeon based studies ran on the NASA Ames
Research Center Pleiades cluster employing Xeon Broadwell
nodes. Each Pleiades Broadwell rack contains 72 nodes; each
node contains two 14-core E5-2680v4 (2.4 GHz) processors
and 128 GB of memory, providing approximately 4.6 GB
per core. The Broadwell nodes are connected to the Pleiades
InfiniBand network (ib0 and ib1) via four-lane Fourteen Data
Rate (4X FDR) devices and switches for internode commu-
nication. The other system is a cluster of Xeon Phi nodes,
also located at NASA Ames Research Center. It has 20 nodes
of Intel(R) Xeon Phi(TM) CPU 7230 running at 1.3GHz.
Each node has 64 CPU cores run as 256 Hyper-Threaded
logical cores. Each physical core has two 512-bit VPUs. There
are 16GB of high bandwidth MCDRAM and 192GB DDR4
memory on each node. While we were writing this report,
Skylake nodes were added to the NASA Ames Research
Center Electra cluster. We have added some preliminary results
for this system as well. Electra now includes 1,152 Skylake
nodes, which are partitioned into eight physical racks. Each
node contains two 20-core Xeon Gold 6148 sockets (2.4 GHz)
and 192 GB of memory. The Skylake processors include the
Advanced Vector Extensions 512 (AVX-512).

For our study we used the Intel (R) compiler, 2018.0.128
and SGI MPI version 2.17 which is part of SGI’s Message

Passing Toolkit (MPT) . On the KNL cluster we used Intel
MPI version 2017 update 2.

For the Xeon Broadwell nodes we used the flags:
icc -O3 -qopenmp-simd

For the Xeon Phi we used the same compiler version with
the flags:
icc -xmic-avx512 -O3 -qopenmp-simd

B. MPI Scalability and Computational Performance on Xeon
Broadwell Nodes

For our tests we ran experiments on 3 different sets of input
data, which are simulating accretion disks around black holes
as studied in [36, 40]. The 3 data sets differ in the spatial
resolution we use. Higher spatial resolution requires more MPI
ranks and the actual MPI ranks we use are

• AngularDisk448 is case suitable for up to 448 ranks
• AngularDisk1792 is suitable for up to 1792 ranks
• AngularDisk6196 is suitable for up to 6196 ranks
In all our experiments we use Xeon Broadwell nodes,

placing 28 ranks per node. Using fewer ranks per node did not
yield a performance gain. Hyper-threading was not beneficial,
but rather detrimental. Scaling charts are shown in Figure 1.

Fig. 1. Athena++ scalability for different problem sizes on Xeon Broadwell
nodes. The vertical axis reports zones/second, therefore higher means better.

We note that the application scales, almost to maximum
number of ranks for all 3 test cases. The chart in Figure 2
shows computation and communication time on a logarithmic
scale for an increasing number of nodes. Both, computation
and communication decrease up to 32 nodes. Almost all of
the overall time is spent in computation. Only for 64 nodes,
the maximum possible number for this test case, does the
communication cost increase significantly and starts to impact
the overall time significantly.

We note that even for the maximum number of ranks most of
the time is spent in computation. Most of the communication is
performed through point-to-point (p2p) communication, which
can be overlapped with computation. This behavior was the
same for all 3 test cases.

The chart in Figure 3 shows the average memory used by
the application per node. We see that the usage is decreasing



Fig. 2. Computation and MPI communication Angular Disk 1792 test case.
28 MPI ranks are placed on each compute node.

Fig. 3. Athena++ used node memory with an increasing number of nodes for
angular disk case 1792. There are 28 MPI ranks on each node. Each nodes
provides 128 GB of DRAM.

when increasing the number of ranks. This indicates that there
is very little replicated data within Athena.

C. Thread Scalability on Xeon Nodes

We did some preliminary performance studies employing
multithreading via OpenMP. Our thread scalability experi-
ments were conducted for a linear wave, which is very similar
to the previous disk simulation in the sense that they are both
using the same modules in the code. The only difference is
that the linear wave is testing the propagation of a radiation
modified sound wave in a uniform background medium. We
used 64 nodes, placing 1 MPI rank per node. Other placement
schemes are possible, but we wanted to allow for a maximum
number of 28 threads. The performance profile in Athena is
flat. Below is an excerpt of a performance profile for one of
the most time consuming ranks for a linear wave calculation:

Fig. 4. Routine based thread scalability for a linear wave test case.

Elap: 61.81
User: 57.13
Sys: 4.48
Total: 66.64 Symbol

8.79 RadIntegrator::CalculateFluxes
8.61 Radiation::CalculateMoment
5.93 RadIntegrator::FluxDivergence
5.19 RadIntegrator::AddSourceTerms
4.74 BufferUtility::Unpack4DData
4.45 Radiation::CalculateComMoment
4.14 BufferUtility::Pack4DData
1.80 RadIntegrator::SecondOrderFluxX1
1.63 RadIntegrator::AbsorptionScattering

....

We focus for now on a few of the most time consuming
routines. Figure 4 shows the timings for the routines that we
had parallelized as described in Section III-C . We see a good
scalability up to about 4 threads. Using 8 threads still yields
performance improvement for some routines, but we noticed a
significant load imbalance among the threads. Our future work
will include increasing thread scalability.

D. Comparing Xeon to KNL

As mentioned earlier, our KNL system is endowed with
16 GB of MCDRAM per node. If not mentioned otherwise,
we have configured all of the MCDRAM as cache for our
experiments. We ran the 3 test angular disk cases on 8 KNL
nodes.

The chart in Figure 5 shows the performance on Xeon and
KNL for test case 1792.

We employed hyper-threading on KNL, placing 224 threads
per node. Hyper-threading turned out be beneficial on KNL.
This is due to excellent MPI scalability of Athena++. Being
able to run with a higher number of ranks outweighs any
negative impact of resource sharing due to hyper-threading.
For our test cases we noticed a performance advantage of KNL
over Xeon Broadwell, which is increasing when increasing
number of nodes.

All of the computationally intensive routines are fully
vectorized, either by the compiler directly or by inserting omp



Fig. 5. Athena++ Performance on Xeon and Xeon Phi. Higher rates indicate
better performance. All of the 16 GB MCDRAM are configured as cache.

simd pragmas as described in Section III-B. The KNL proces-
sor has an avx512 instructions set. The vector register width is
64 bytes, which is double the size of the avx instruction set of
the Xeon processor. Vectorization is therefore very important
for the KNL system. We compared the performance running
with and without vectorization in Figure 6

Fig. 6. Athena++ Performance with and without vectorization on KNL. For
runs on 10, 11 and 12 nodes, there are fewer than 28 ranks per node. Higher
rates indicate better performance.

We do observe a significant performance increase using
fully vectorized code. Performance profiling indicated, how-
ever, that the execution is very memory bound. We therefore
collected profiling statistics to better understand the impact of
memory and cache size on the performance. We have collected
statistics on per node memory usage on KNL. The chart in
Figure 7 shows behavior of speed-up and per-node memory
usage. We plotted the ratio of the total memory usage over
the size of available MCDRAM. We observe that the speed-up
increases with increasing core count. Correspondingly, there
is an increase of the percentage of application memory that

fits into MCDRAM. Going up to 8 nodes, the application
benefits from both aspects. The number of MPI ranks does
not increase from 8 nodes to 11 nodes, as it is restricted to
1792. Nevertheless, spreading ranks across more nodes further
decreases the memory requirements per node. For runs on 8
nodes and more, all data fits within the 16 GB MCDRAM.

Fig. 7. Speed-up and Memory Usage on KNL for Angular Disk Case 1792

We ran our tests in different cache configuration modes to
further study the impact of high bandwidth memory. The chart
in Figure 8 shows the performance when configuring 25%,
50% and 100% of the MCDRAM as cache. The performance
on KNL improves with increased availability of MCDRAM.
This is a further indication that the application is memory
bound.

Fig. 8. Performance for Angular Disk 1792 on KNL in different cache modes.

E. Preliminary performance analysis on Intel Skylake nodes

A subset of the avx512 instructions is also available for Intel
Skylake nodes. While KNL and Skylake share a large set of
the instructions, the sets are not identical. For example, KNL
has instructions for Exponential, Reciprocal, and Prefetch
instructions. Skylake includes instructions for Vector Length
extensions, Byte, Word, Double and Quadword instructions
and others. In addition to xmm and ymm registers, zmm



registers are available to support a 512 bit SIMD length. On
Skylake, we set the
-xcore-avx512

compiler flag to enable the generation of avx512 instruc-
tions. By default, the Intel compiler will not be aggressive
about using the zmm registers. Starting with Intel v 18.0
compilers, a new flag
-qopt-zmm-usage=low|high

is added to enable user control about the aggressiveness of the
compiler. We compiled using 3 different sets of compiler flags
icc -xcore-avx2 -O3 -qopenmp-simd

icc -xcore-avx512 -O3 -qopenmp-simd

icc -xcore-avx512 -qopt-zmm-usage=high -O3 -qopenmp-simd

We ran a linear wave test case using 512, 1024 and 2048
ranks on Skylake nodes. We placed 40 ranks on each Skylake
node, using 13, 26 and 52 nodes respectively. The chart in Fig-
ure 9 shows the performance. It also includes the performance
for runs on 19, 37 and 74 Broadwell nodes. By default, the
compiler did generate avx2 instructions, even when the -xcore-
avx512 flag was set. Increasing the usage of zmm registers
yields a slight overall performance degradation. Performance
analysis revealed that the most time consuming basic blocks
did in fact benefit from the increased SIMD length. However,
we noticed an increase of time spent in system library calls
to memory copy operations. We are currently investigating
the cause of this. When comparing Skylake to Broadwell
performance, we observe that 52 Skylake nodes outperform
74 Broadwell nodes by about 10%. As we have found that
increased vector length did not help the overall performance,
we assume at this point that the increase is due entirely to
increased memory bandwidth on the Sklylake nodes. We are
currently conducting further studies on this.

Fig. 9. Performance impact of avx512 instructions on Sklylake for a linear
wave test case. The aggressive use of zmm registers degrades the overall
performance.

V. CONCLUSIONS AND FUTURE WORK

We have conducted an in-depth performance study of the
radiation transport method in the Athena++ Astrophysics

code. We looked into MPI communication, multithreading and
vectorization. We have experimented on different hardware
architectures, such as Intel Xeon Broadwell and Intel Xeon
Phi (KNL). Some preliminary results have also been added
for Intel Xeon Sklylake nodes. We found that Athena++ lends
itself to exploiting parallelism on all levels of parallelism on
modern multi- and many-core processors. Using asynchronous
communication and persistent communication requests, as well
as minimizing the amount of replicated data and MPI buffer
space lead to very good MPI scalability. Traversing data struc-
tures with stride 1 in the innermost loops allows exploiting
SIMD parallelism, which improves core compute performance
on modern processors. This is supported by arranging complex
data structures as SOA (Structures Of Arrays). In addition to
this, Athena++ lends itself to thread parallelism, which may
further decrease the amount of communication. In our future
work we are planning to address aspects such as extending
OpenMP parallelization in Athena++ and improving memory
access patterns to overcome memory bandwidth limitations.
This could be achieved, for example, by re-arranging data
structures and by using streaming store operations. In addition,
we are planning to experiment using GPU accelerators.
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[23] B. van der Holst, G. Tóth, I. V. Sokolov, K. G. Powell,
J. P. Holloway, E. S. Myra, Q. Stout, M. L. Adams,
J. E. Morel, S. Karni, B. Fryxell, and R. P. Drake.
CRASH: A Block-adaptive-mesh Code for Radiative
Shock Hydrodynamics-Implementation and Verification.
ApJS, 194:23, June 2011.
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[25] M. González, E. Audit, and P. Huynh. HERACLES: a
three-dimensional radiation hydrodynamics code. A&A,
464:429–435, March 2007.

[26] A. Sa̧dowski, R. Narayan, A. Tchekhovskoy, and Y. Zhu.
Semi-implicit scheme for treating radiation under M1
closure in general relativistic conservative fluid dynamics
codes. MNRAS, 429:3533–3550, March 2013.

[27] J. C. McKinney, A. Tchekhovskoy, A. Sadowski, and
R. Narayan. Three-dimensional general relativistic ra-
diation magnetohydrodynamical simulation of super-
Eddington accretion, using a new code HARMRAD with
M1 closure. MNRAS, 441:3177–3208, July 2014.

[28] J. I. Castor. Radiation Hydrodynamics. November 2004.
[29] S. W. Davis, Y.-F. Jiang, J. M. Stone, and N. Murray.

Radiation Feedback in ULIRGS: Are Photons Movers
and Shakers? arXiv:1403.1874, March 2014.

[30] B. A. Whitney. Monte Carlo radiative transfer. Bulletin
of the Astronomical Society of India, 39:101–127, March
2011.

[31] J. D. Densmore, T. J. Urbatsch, T. M. Evans, and
M. W. Buksas. A hybrid transport-diffusion method for
Monte Carlo radiative-transfer simulations. Journal of
Computational Physics, 222:485–503, March 2007.

[32] J. Steinacker, M. Baes, and K. D. Gordon. Three-
Dimensional Dust Radiative Transfer*. ARA&A, 51:63–
104, August 2013.

[33] N. Roth and D. Kasen. Monte Carlo Radiation Hydro-
dynamics with Implicit Methods. ArXiv e-prints, April
2014.

[34] Y.-F. Jiang, J. M. Stone, and S. W. Davis. An Algorithm
for Radiation Magnetohydrodynamics Based on Solving
the Time-dependent Transfer Equation. ApJS, 213:7, July
2014.

[35] Y.-F. Jiang, J. M. Stone, and S. W. Davis. On the Thermal
Stability of Radiation-dominated Accretion Disks. ApJ,
778:65, November 2013.

[36] Y.-F. Jiang, J. M. Stone, and S. W. Davis. A Global
Three-dimensional Radiation Magneto-hydrodynamic
Simulation of Super-Eddington Accretion Disks. ApJ,
796:106, December 2014.

[37] Y.-F. Jiang, S. W. Davis, and J. M. Stone. Iron Opacity
Bump Changes the Stability and Structure of Accretion
Disks in Active Galactic Nuclei. ApJ, 827:10, August
2016.

[38] Y.-F. Jiang, J. Guillochon, and A. Loeb. Prompt Radia-
tion and Mass Outflows from the Stream-Stream Colli-
sions of Tidal Disruption Events. ApJ, 830:125, October
2016.

[39] Y.-F. Jiang, M. Cantiello, L. Bildsten, E. Quataert, and
O. Blaes. Local Radiation Hydrodynamic Simulations of
Massive Star Envelopes at the Iron Opacity Peak. ApJ,
813:74, November 2015.

[40] Y.-F. Jiang, M. Cantiello, L. Bildsten, E. Quataert, and
O. Blaes. The Effects of Magnetic Fields on the Dy-
namics of Radiation Pressure-dominated Massive Star
Envelopes. ApJ, 843:68, July 2017.

[41] OpenMP 4.5 Specifications http://www.openmp.org/wp-
content/uploads/openmp-4.5.pdf.

[42] W. Gropp, T. Hoeffler, R. Thakur, E. Lusk



Using Advanced MPI http://www.openmp.org/wp-
content/uploads/openmp-4.5.pdf.


